COMMUNITY GARDEN

Your class is going to plant vegetables in a section of the local community garden. The garden manager has provided an area to plant the vegetables as follows:

The total area for the class to plant vegetables will be a rectangle 40 feet long and 30 feet wide.

The class has decided to plant four rectangular sections of the class garden with vegetables according to this plan:

- 1/4 of the garden will be planted with carrots.
- 1/6 of the garden will be planted with potatoes.
- 1/8 of the garden will be planted with broccoli.
- 1/12 of the garden will be planted with corn.

In this task, you will analyze the class plan and determine an alternate plan that will help make the most use of the available area.

1. Using the connect line tool, draw rectangles on this model of the garden to represent the four rectangular sections for planting vegetables according to the class plan. The garden model is divided into 5 feet by 5 feet sections.

- Use whole number side lengths.
- Each square on the model represents 1 square foot.
- Drag the correct label that shows the vegetable for each section.
2. Think about the class plan for the garden plot. What fraction of the garden plot will be left over after the class plants their vegetables?

3. Your class has decided to plant potatoes in the unused portion of the garden plot.

Part A
What total fraction of the class garden will be planted with potatoes?
Remember that 1/6 of the garden is already planned for potatoes.

Enter your response in the first response box.

Part B
How many total square feet of the class garden plot will be planted with potatoes?

Enter your response in the second response box.
Using the new plan with more potatoes, write an equation to show that the **total area** of the class’s garden is used to grow vegetables. Make sure the equation shows that the sum of the areas, in square feet, of each section equals the total area of the class’s garden.

- Carrots
- Potatoes
- Broccoli
- Corn

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>+</th>
<th>-</th>
<th>x</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td><</td>
<td>≤</td>
<td>=</td>
<td>≥</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>(</td>
<td>)</td>
</tr>
</tbody>
</table>